Big Oh Rules
Notation
For notation not displayed here, check out the notation page.
O = Big Oh = f(x) is in the "Big Oh" for g(x) if f(x) is equal or slower
growing then g(x).
These are the rules for dealing with Big Oh Notation
1) Coefficient Rule
f(n) ∈ O(g(n)) then kf(n) ∈ O(g(n)) where k > 0
2) Sum Rule
f(n) ∈ O(h(n)) and g(n) ∈ (h(n)) then f(n) + g(n) ∈ O(h(n))
or
f(n) ∈ O(h(n)) and g(n) ∈ O(p(n)) then f(n) + g(n) ∈ O(h(n) + p(n))
3) Polynomial Rule
for non-negative constants a0 …. ak
aknk + ak-1nk-1+ … + a0n0 ∈ O(nk)
4) Transitivity
f(n) ∈ O (g(n)) and g(n) ∈ O (h(n)) then f(n) ∈ O (h(n))
5) Recipical Rule
f(n) ∈ O(g(n)) then 1/g(n) ∈ O(1/f(n))
6) Log Domination Rule
logkn ∈ O(nd) where k > 0 and d > 0
7) Log Base Rule
logan ∈ O(logbn) where a ≠ 1, a > 0 and b ≠ 1, b > 0
8) Product Rule
f(n) ∈ O(h(n)) and g(n) ∈ O(p(n)) then f(n)g(n) ∈ O(h(n)p(n))
9) Constant Factor Rule
af(n) ∈ O(f(n)), ∀ positive constant a
10) Power Domination Rule
If f(n) is a polynomial with highest power k, then
f(n) ∈ O(nk+a) ∀ positive constants a